FACOLTÀ DI INGEGNERIA

Corso di laurea in Ingegneria Edile Architettura

Prova scritta di **Geometria** assegnata il 26/01/2010

1-Durata della prova: tre ore.

2-Non si può uscire dall'aula prima di aver consegnato definitivamente il compito.

3-Si possono consultare solo i libri di testo.

4-Usare solo la carta fornita dal Dipartimento.

Ι

In \mathbb{R}^3 sono dati i vettori:

$$v_1 = (1, 1, 1);$$
 $v_2 = (0, 1, 1);$ $v_3 = (1, 1, 0)$ e $v_4 = (1, -1, 1)$

- 1. Sapendo che v_1, v_2 e v_3 sono autovettori di un endomorfismo $f : \mathbb{R}^3 \to \mathbb{R}^3$, determinare i rispettivi autovalori tenendo conto che $f(v_4) = (h, 1, -h)$.
- 2. Tenuto conto che gli autovalori determinati al numero precedente sono $\lambda_1 = \frac{-1}{3}$; $\lambda_2 = \frac{h-1}{2}$; $\lambda_3 = \frac{-(h+1)}{2}$, studiare al variare di h l'applicazione lineare f determinando in ogni caso una base di Ker(f) e Im(f).
- 3. Detto $V = \mathcal{L}(v_1, v_4)$ trovare il valore di h per cui $f_{|V}$ induca un endomorfismo $f': V \to V$. Diagonalizzare $M^{\mathcal{B},\mathcal{B}}(f')$, con $\mathcal{B} = \{v_1, v_4\}$, indicando la matrice diagonalizzante.
- 4. Trovare, al variare di h, la controimmagine $f^{-1}(W)$, con $W = \mathcal{L}(v_2, v_4)$.

II

Sia fissato nello spazio un sistema di riferimento cartesiano ortogonale $O\vec{x}\vec{y}\vec{z}.u.$

Si considerino le rette

$$r \quad \begin{cases} x+y=0 \\ t=0 \end{cases} \qquad s \quad \begin{cases} x-1=0 \\ z=0 \end{cases} \qquad t \quad \begin{cases} z-1=0 \\ y=0 \end{cases}$$

- 1. Detto G un punto generico di r, si determini e si studi la quadrica Q luogo delle rette g passanti per G e complanari ad s e t.
- 2. Determinare tutte le possibili sezioni piane di Q.
- 3. Studiare in particolare la sezione Γ di Q col piano x+y+z+1=0 e ridurre a forma canonica la proiezione ortogonale di Γ sul piano z=0.
- 4. Trovare i sistemi di rette su Q.